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Hamiltonian (in particular, continuity and growth properties), properties of :Hiil
the solutions and the existence and uniqueness. Uniqueness is exhibited in o
appropriate growth classes depending on the Hamiltonian and existence is
exhibited in these classes when the assumptions are slightly strengthened.
Existence results are also given under assumptions for which uniqueness fails,
existence of minimal solutions is shown given the existence of a subsolution,

and examples are given to indicate the sharpness of some of the results.
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REMARKS ON THE EXISTENCE AND UNIQUENESS OF UNBOUNDED
VISCOSITY SOLUTIONS OF HAMILTON-JACOBI EQUATIONS

Michael G. Crandall' and Pierre-Louis Lions.'

INTRODUCTION

This paper deals with existence and uniqueness questions for solutions of general

first-order Hamilton-Jacobi equations. The development of the theory of "viscosity

F. solutions”™ has resulted in existence and uniqueness results of substantial generality for
E solutions which are uniformly continuous (or UC) on R: we refer the reader to M. G.
Crandall and P. L. Lions (6] and M. G. Crandall, L. C. Evans and P. L. Lions (4] for the
main properties of viscosity solutions including definitions, uniqueness for bounded
uniformly continuous (or BUC) solutions and existence in model cases; P. L. Lions (18],
{19], P. E. Souganidis (22), Barles [1] for existence of BUC solutions; H. Ishii (13] -
[15], M. G. Crandall and P. L. Lions [8] ~ [11] for existence and uniqueness of UC
solutions; P. L. Lions [18] for the relevance of viscosity solutions to deterministic
optimal control theory and L. C. Evans and P. E. Souganidis (12] concerning differential
games.

However, for Hamiltonians such as those which occur in control theory or differential
games, dealing only with BUC or UC value functions requires somewhat stringent
-i' assumptions. It is our goal here to broaden the scope of the theory and to point out
relations between structure properties of the Hamiltonian and naturally associated classes

of viscosity solutions in which existence and uniqueness holds.

*Department of Mathematics, University of Wisconsin, Madison, Wisconsin 53706, USA.

**Ceremade, University of Paris - Dauphine, 775775 Paris Cedex 16, France.

Sponsored by the United States Army under Contract No. DAARG29-80-C-0041.
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For the sake of simplicity we will consider two model problems, namely the stationary
problem
(SP)¢ u + H(x,Du) + f(x) = 0 in R,
which we have indexed by an “inhomgeneous" term f ¢ C(IP) for later convenience, and the
Cauchy problem
(CP) ue + Hix,t,Du) = 0 in R x 10,7,

u(x,0) = ¢(x) in R,
in which the Hamiltonians H(x,p), H(x,t,p) will always be assumed to be at least
continuous. In these problems, all the functions involved are real-valued functions of the
indicated arguments, x ¢ R and Du stands for the gradient of u in the space variables x;
Du = (“x1' S ,uxN). The methods we present below allow one to treat more general
equations, for example, more general dependencies on u of the form H(x,u,Du) = 0 in place
of (SP)¢, but we will not pursue this straightforward matter here.

We next introduce a condition which will often be assumed and then illustrate the
nature of our results with some examples. Here and later, By denotes the ball of radius R
centered at the origin and | I is the Euclidean norm on . a nondecreasing, continuous
and subadditive function m:(0,®}) + [0,») satisfying m(D) = 0 will be called a modulus and
a mapping 0:{0,®») x (0,®») + [0,») for which r + ¢(r,R) is a modulus for R > 0 will be
called a local modulus. If H ¢ C(RY x [0,T) x RN) is a Hamiltonian, we say H satisfies (U)
(for "uniqueness™) if there is a modulus m such that
(u) Hiy,t, A (x = y)) = Hix,t,0(x = y)) € m(A]x = y|% + |x = y|)

for x, y ¢ RN, X » 0, and t ¢ [0,T].
We are also interested in the local version of (U); that is there is a local modulus o such
that
(L) Hiy,t, Mx = y)) = Hix,t,0(x = y)) € a(A|x = |2 + |x = y|.R)
for R > 0, x, y «¢ BR' A »0and t ~ {0,T].
For example, the Hamiltonian H(x,p) = sin(xz)p in R x R satisfies (LU) but not (U),

Existence and uniqueness results using (U) and other hypotheses are given in Crandall and

~2-
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Lions {8] ~ (11] and 1shii [15) where one can find further commentary on this condition.
Examples given below (see also (11, Section $)) show that it does not guarantee uniqueness
by itself - other assumptions are needed. A generalization of (U) is given in [9], [(10],
but we will not employ this generality here in either its global or local form, as this
would obscure the ideas and may easily be done by the reader once the ideas are made
clear. We will use the conditions (U) and (LU) in the stationary problem with the obvious
interpretation if H is independent of t.

< Example 1: Assume that for some u > 0 H satisfies

() |Kix,p) - Hxe)| < uip - ql, ¥ xipiq € R

Assume, moreover, that H satisfies (LU). Then there is at most one viscosity solution

u € C(lN) of (SP)g satisfying

(2) lim u(x)exp(=|x|/u) = 0 .
X| »m

If H also satisfies
-«

(3) [ sup |B(x,0)]|e Ty ¢ w
4] |x|<r

then (SP)O has a viscosity solution u ¢ C(IF) satisfying (2).

Example 2: Assume that there is a C and & ¢ {0,1) such that
(4) lR(x,p) = H(xsq)| < Clp = q|® for piq € RN and x, y € R,
and H satisfies (LU). Then there exists a unique viscosity solution u of (SP)f in
c(’Y).

Observe that in this case no restriction is needed on the behaviour of the solution
for uniqueness nor on the growth of f for existence.
Examgle 3: Let H satisfy (LU). Assume, moreover, that there is a modulus Y such that
(5) |H(x,t,p) - H(x,t,q)| < yv(|p - ql(1 + le)) for x,q.,p € RN, t e (0,T).
Then for any ¢ « C(lp) there exists a unique viscosity solution u ¢ C(IN x {(0,T]) of
(CP) (i.e., the eguation is satisfied in the viscosity sense on RN x (0,T] and

u(x,0) = 9(x) in lp). Again, no restrictions are made at infinjity.

-3-




In the text we present many more resu “s of this kind, including existence results in
cases where nonuniqueness is possible and the existence of minimal solutions.

We also mention that the uniqueness statement in Example 1 and some particular cases
covered by Example 3 were first obtained by H. Ishii [13] by a somewhat more complicated
arqument than that given herein. For problems arising in control theory, results analogous
to those of Example 1 are to be found in P. L. Lions [20] (as particular cases of optimal
stochastic control situations). Some of the results given below were announced in M. G.
Crandall and P. L. Lions [7].

Firally we would like to mention that many of the results presented below may be
adapted to the case in which the equations are set in an infinite dimensional Banach space
V (instead of R¥). This can be done by combining the arguments outlined herein with those
given in M. G. Crandall and P. L. Lions [9], [10], [11]. Moreover, as mentioned above, the
role of A(x - y) in (U) and (LU) may be replaced by more general quantities as in these

wOorks.
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I. LIPSCHITZ HAMILTONIANS AND THE STATIONARY PROBLEM.

In this section we will assume that H satisfies (1) (or variants) and (LU) and we
will be interested in the existence and uniqueness of viscosity solutions of (SP)g. Let us
first observe that some limitations on the growth of solutions have to be imposed in order
to have uniqueness. Indeed, the simple linear equation
(e) -pyu* +u =0 in R

1

has the distinct C  (and hence viscosity) solutions u = 0 and u = exp(x/p). In view of

this example, it is natural to impose the following conditions on sub and supersolutions

(7) lim u(x)exp(=|x|/u) < 0
[ o0

(8) lim  v(x)exp(={x|/p) > 0
| %] oo

as is done below. In the following statement of our main result, = max{(r,0).

Theorem 1.1: Let H satisfy (1), (LU) and f ¢ C(lN)-

Unigueness: Let wu,v ¢ C(RY) satisfy (7) and (8). Let H satisfy (LU). Assume that
u is a viscosity subsolution of (SP)y and that v 1is a viscosity supersolution of (SP)¢
in RY . Then for all x ¢ RY

(9) - oo < f sup{£(y)¥:|x - y| < utle~tat .
i}
Existence: Let H(x,0) also satisfy (3). Then there exists a unique viscosity solution
u e C(RY) of (SP); satisfying (2).
Kemarks: A unigqueness result of a similar form was first obtained by H. Ishii [13] by a

different method. OUbserv~ also that the right hand side of (9) is bounded from above by

Proof of the Unigueness: Let xg Rh and let R < ». we are going to compare u and

v en Bix;,k), the open ball of radius K centerecd at xq. This 1s achieved by use of the

next lemmd .
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Lemma 1.3: Llet u,v ¢ c(r¥) be, respectively, viscosity sub and supersolutions of (SP),

and (SP)g. Llet H satisfy (1) and (LU). Then we have

R/u
(u(xg) - v(xo))+ </ sup{ft(y):ly - xol < utle"tat
0
(10)

+ max ( sup w-v" sup f+)e .
BB(XO.R) B( XOIR)

We first complete the proof of (9) and then prove the lemma. We may of course assume

that the right hand side of (10) is finite; this implies that

+
(1 ( sup £ )exp(-R /u) + 0
B(Xoan)
for some sequence R, + =. On the other hand, in view of (7)=(8),

( sup (u - v)*) exp(~R/p) + 0 as R » = .
BB(xo,R)

Therefore choosing R = R, in (10) and sending n + ©, we deduce (2).
We now prove Lemma 1.1: We set K = max ( sup (u ~ v)+, sup f+) and
3B(x°.R) B(XO'R)
introduce the function
wix) = Rexp{(]|x =~ xol - R)/u}
R

+ (Vulexp(|x - Xo‘/u) { sup{tf(y):ly = xol < sle”S/Uda .
X=X
0

One easily checks that w is the viscosity solution of

-u|Dw| + w = sup{f’(y):]y - xol < |x - xol} in  Bl(xg,R)

w =K on QB(xo.Rl .
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Next, we claim that v + w is a viscosity supersolution of (SP),; in B(xp,R). Formally
this is clear since
H(x,D(v + w)) > H(x,Dv) = u|Dw| > =(v + w) = £ = y|Dw| + w > =(v + w) .

To justify this one first replaces ]x - xol by (62 + |x - xO|2)1/2 in the definition
of w, makes the corresponding estimate (now valid since vs is C’) at points of
superdifferentiability of v + w and then passes to the limit as § + 0.

Observing that v + w » u on aB(xO,R) and applying the comparison results of [8],
we deduce that v + w > u in B(xg.R), which implies (10).

Proof of the Existence: For R > 0 let 9r be a smooth function on RN supported in Byg and

satisfying 0 € g € 1, g T 1 on By and |Dgg| € 2/R, and then define Hp(x,p) =
er(x)H(x,p). We consider the approximate problem
up + HR(x,DuR) =0

The Hamiltonian H, satisfies (1). Moreover

R

Hply,A(x = y)) = Hp(x,A(x ~ y)) = (egly) = ogp(x))(H(y,A(x = y)}) - H(y.0)) +
(12)

PRIX)((H(y,A(x = ¥)) = H(x,A(x = y))) + (@r(x) = @g(y))H(y,0}.
Now the first term on the right is at most

(w/R x = y|Irx =y
and if |x - y| < 1, the second is at most
2000 |x = y|2 + |x = yl.2rR + 1),

where o is the local modulus of H from (LU), and the third term may obviously be estimated

by a multiple of |x - y|. It follows that Hp satisfies (U). Since also

Hp € UC(I!N x By) for all K > 0, the existence results of [8] apply and there are viscosity

solutions ug € BUC(RN) of ug + Hp(x,Dug) = 0. We now use the comparison result Lemma I.1 b.
to compare up and the solution w = 0 of w + Hp(x,Dw) - Hp(x,0) = U and let the radius in

(10) tend to ® to conclude that e

(13) lu (x)! < —‘Ielxl/"J f supHH(y,O)l: lyl < s}e-s/uds . ,’y
R u x \.-'.
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let R, R', Ry, Ry > 0 and R, R' > Ry + Rg. Then for x ¢ BRO' Hp and Hps agree on B(x,R4)

and we may use Lemma 1.1 again with u,v = up, ups to conclude that

i
luR(x) - uR,(x)I < sup IuR - uR,Ie .
BB(x,R,)
Using (13) in this estimate we finally deduce that
2 - /
lu (x) = u_,(x)] < % exp(R/u) [  sup{|By,0n|:]y| < sle! /Mg .
R R u 0
(R,= Ry)

Because H(x,0) satisfies (3), we conclude that the uyp form a Cauchy net in C(BRD) ags R+ o
for any Ry > 0. By the standard stability results for viscosity solutions ((6]), we deduce
that ug converges uniformly on bounded sets to some viscosity solution u of (SP)g. 1In
addition, letting R + = in (13), we see that u satisfies (2).
Remark: Considering the equation
-uiou| +u = £(x) in B,

one sees {again) that uniqueness if false without the condition u(x)exp(-!x]/u)-f) 0 as
|x| + » (take £ = 0, u(x) = exp|x|/u or u = 0) and then that existence in this class may
fail if f does not satisfy (3).

We consider next a slightly more general situation where (1) is replaced by
(14) [H(x.p] - H(x,q){ < Q((xl)(p - q(. ¥ x,piq € ﬂN

where & is continuous, increasing, ¢(0) » 0 and $ satisfies

(15) ] a5 . e
1

Then the arguments used above are easily adapted to prove the following result:

Theorem 1.2: Let R satisfy (LU), (14) and £ ¢ C(R'). _ ]

Uniqueness: Let wu,v ¢ C(ip) satisfy respectively

)
. «
I x] x| '

—— d . d - .-
(16) Tim u(x)expi- [ 0(3)} <0, lim v(xlexp{- [ 0—(-‘;—)} >0. 1
Ix'-»m 1 lx rm 1 R
CE ‘J
B
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Let u be a viscosity subsolution of (SP); and v be a viscosity supersolution of (SP)g.

Then for all x ¢ R

«® t
+ + ds dt
- < : - _—
(v - tx) <[ sup{fTy)zly| < thexp( { o7 Tit]
x x|
Existence: 1In addition, let
® t ds dt
17 : - TsT :
(17) £ sup{|H(y,0)|:]y| < t}exp( { 7 ey <

Then there exists a unique viscosity sulution u € c(®) ot (SP),y satisfying

|
(14) lim u(x)exp{- f
|x |+ 1

-10-
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1I. UNIFORMLY CONTINUOUS HAMILTONIANS AND THE STATIONARY PROBLEM.

We now turn to the case when H satisfies (4) or, more generally,
(19) |H(x,p) - H(x,q)| < v(|p =ql)y ¥ pger”

where Y is a modulus. We assume that the inverse v of y satisfies

@ 1
ds ds
(20) { vior <= | &

Of course if vy(r) = cr® with C» 0, 0 <a < 1, then (20) holds. The main result below
asserts existence and uniqueness without any conditions at infinity: such results may be
expected in view of the trivial case H(x,p) = H(x).

Theorem I1.1: let H satisfy (LU), (19), (20) and f ¢ C(lp)-

Unigueness: let u,v € C(IP) be, respectively, viscosity sub and supersolutions of

(8P), and (SP}¢. Then

(21 sup (u=v)’ < sup £7 .
g rY

Existence: There exists a unique viscosity solution of (SP)¢.

Remarks: Of course, one could formulate results which unify Theorem I.1 and Theorem
I1.1. Roughly speaking, if (20) does not hold (as is the case if y(r) = ur), then
H(x,0), u, v have to satisfy certain growth conditions at infinity which are revealed by
an examination of the proofs we present.

Sketch of Proof: We will only prove (21), which follows from a simple application of the
lemma below. The existence is also obtained in a similar way to the above by use of the

lemma. Let R > 0 and denote by wgp the function defined by

4o
ds

WR(IX') vis

(22) =R - (xl for 0 < Ix{ <R .

)

One checks easily that Wp 1is a viscosity solution of

(23) -Y({DwR|) + wR = 0 in BR, yp(x) * +» as [x| + R~ .
-11=
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Therefore, one has
Lemma II.1: With the notations and assumptions of Theorem II.1, for all xg € Ip, R>0

(24) (- v)*x) < wgl|x = xol) + sup f£*, vxe B(xg/R) .
B(xoa R)

z

Next, observe that in view of the explicit formula (24) we have: wR(|x|) + 0 as
{x| + ®, if R = [x| + «, In particular wp converges uniformly to 0 on compact
sets. This combined with (24) yields (21).
Remark: One sees in the above proof the basic role played by the solution wgp of (23),
which is an HJ equation with infinite boundary conditions. 1In a different context, H.
Brezis {3] uses a similar method to obtain uniqueness results without growth
restrictions. Finally, let us observe that for more general nonlinear partial differential
equations, the possibility of prescribing infinite boundary conditions as in (23) is
studied in J. M. Lasry and P. L. Lions {16], [17]). 1In particular, using the results and
methods of (16), (17] one sees that for any (say smooth) bounded open set Q and bounded
continuous function f on Q2 there exists a unique viscosity solution of

-u(IDw]) +w=f(x) in Q, w+ +» as dist(x,3) + 4w,

In addition, w is locally Lipschitz on Q@ and if @, ﬁ IP the corresponding solutions
w, converge to 0 uniformly on compact sets.

We next formulate (without proof) an extension of (19)
(25) [H(x,p) = Hix,@) | € v(8(|x])|p = al)s ¥ x,piq € R
where Yy satisfies (20), ¢ is continuous, increasing, &(0) > 0 and ¢ satisfies (15).
Theorem 11.2: Let (20) and (15) hold, f ¢ C(lp), and H satisfy (LU) and (25).
Uniqueness: let wu,v € C(RN) be, respectively, viscosity sub and supersolutions of (SP)0
resp. (SP)g with f ¢ C(IN)- Then (21) holds.

Existence: There exists a viscosity solution of (SP)g.

-12-
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III. POWER-LIKE HAMILTONIANS AND THE STATIONARY PROBLEM.

Motivated by the case of an Hamiltonian of the form H(x,p) = Alplm with m > 1,
A > 0, we consider the case of a Hamiltonian satisfying:

(26) lBxop) = Hixo) ] € {Colp|™ " + cola/™  + c}p - al, ¥ xp.qge B

for some constants Cg,C > 0. We will consider viscosity sub and supersolutions which are
Lipschitz locally in lp and satisfy
(27) Iou| € cqlx) ™' =M + ¢, |ov] < cyfx]®'=" 4+ ¢ ace. on R
where C,C4Cy > 0 and m' = m/(m = 1). i%_ o
The main comparison result is then: R
Theorem III.1: Let (26) hold. Let u and v be locally Lipschitz on & ana, respectively,
viscosity sub and supersolutions of (SP)y and (SP)g with f ¢ C(IF)- Agsume that (26) and -._ti—
(27) hold and Co(c}™' + ¢3™") < Vm'. Then

sup (u = vt < sup £t .

RY R
Remarks: First of all we could replace lplm by more general convex, increasing
functions ¢({p[). 1In fact, the proof below uses only (27) and ii o
(28) |H(x,Du) = H(x,Dv)| < (C + 8|x])|D(v = v}| a.e. in B -

for some C > 0, 8 ¢ (0,1/m'). Clearly (26) and (27) yield (28) with

8 = CO(C".;'1 + C?"). The assumption that (28) holds with 8 ¢ (0, ¥/m') is nearly optimal

in view of the following example: If H(x,p) = =(1/m*)|p|™ then u = 0 solves (SP), i

while u(x) = (1/m')|x|m' also solves (SP)g. Observe that (28) holds with 6 = 1/m‘.

Proof: Again, the proof is quite similar to those sketched before. One chooses RN
9 € (CO(C?'1 + Cg").1/m') for which (28) holds and considers the solution wgp of tL

~(C + 8|x|)|Dwp| + wg = 0 on By, = 1. The viscosity solution of this problem is -

w -
R 3BR SR

1
given by wg(x) = (SE:;Q%%l) /6_ By the comparison results on By we have

{(u - v)*(x) < Ma§ £+ WR(x) Py {u - v)* on Bg .
B

-13-




Finally, observing that |u(x)|,|v(x)l < C+ C|x|m‘ and that > m' we deduce that for

J
8

bounded x, wg(x) Max (u ~ v)f'* 0 as R + «. Thus, we conclude by letting R go to +m.
3B
R

We now conclude this section with an existence result corresponding to the above
uniqueness result
Theorem 1I1I.2: We assume (26) and
(29) H(x,p) = H(x,0) > u|p|m. ¥ (x,p) ¢ R, for some a > 0
(30) [H(x, 00} = o(|x|™") as |x| + » .
Then there exists a unique locally Lipschitz viscosity solution u of (SP)y with the
property that for all € > 0 there is a Ce such that

|Du(x)| < e|x|(m'-1) +C. a.e. on .

Remark: It is possible to replace (29) by
(29°*) H(x,p) = H(x,0) < -a|p|™, ¥ (x,p) € !p, for some a > 0.
Proof: We first build subsolutions of (SP)y. For each € > 0 with C. denoting a

positive constant to be determined below we set

Then u satisfies

m
+ +C + +
H(x,Dgs) u, < C|DE€[ c H(x,0) g

m m' m' '
< Ce fx] +C + o(|x| } - ET lxim -C
m €
and thus we may choose Cs large enough so that for € small enough u is a viscosity
subsolution of (£P) g It 1s clearly enough to show that there exists a viscosity solution
of (SF) satisfying u > u_. Indeed the equation and (29) yield that u is locally

Lipschi*tz and

=




T

a|pu)™ < ~H(x,0) = u < o(x|®") + 57 fxim' + Ce

and thus for € small enough u satisfies (27) with C, arbitrary small. Applying the
uniqueness result, we are then able to conclude. Finally, the existence of a viscosity

solution of (SP)g above U is a very special case of the results proved in Section V.

R .
‘o’

)
ata
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IV. REMARKS ON THE EXISTENCE OF BUC and UC SOLUTIONS OF THE STATIONARY PROBLEM

In this section (SP)O will simply be denoted by (SP). It was proved in M. G. Crandall
and P. L. Lions [8] {see also H. Ishii (15]) that there exists a unique viscosity
solution u of (SP) in UC(IF) provided H satisfies (U) and
(31) H € BUC(R" x Bp) for R > 0.

Related results were previously obtained by G. Barles (1] in the class BUC and then
H. Ishii [13] in the class UC under more restrictive assumptions.

In the papers H. Ishii [15] and M. G. Crandall and P. L. Lions [9], [10], [11] the
requirement (31) is replaced by a (somewhat confusing) array of more general substitutes
which we will not detail here. In particular, the substitutes separate various roles of
(31) as they pertain to uniqueness questions and estimates on moduli of continuity. It is
our goal here to obtain existence in UC(IN) or BUC(RY) without (31). In order to do so
we will need to supplement (U) in some way, and we do so quite simply. The simplicity of
the assumptions, compared to the works mentioned above, is possible because we give up
uniqueness.

We will use the following assumptions: Either
(32) H(x,0) € BUC(RY)
or for some 8 ¢ (0,1) and modulus u
(33) H{y, {x = y)) = H{x, A {x ~ y)) <€ eklx - ylz + u(|x - y|), V xX,y.p € R
{This is just one way to insure the existence of global supersolutions of an associated
problem = see [10].)

The existence result is:

Theorem IV.1: Let H satisfy (U).

1) If (32) holds, then there exists a viscosity solution u ¢ BUC(IN) of (SP).
2) If (33) holds, then there exists a viscosity solution u ¢ UC(NN) of (SP). 1In

addition, if ulr) €« cr® for some C > 0 and a ¢ (0,1), then this solution lies

in cler(my,

-16=
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Example IV.1: If H(x,p) = -6(x,p) = le, X,pP € RV, The above result shows that if

8 € (0,1) there exists a viscosity solution u (which belongs to C°'1(IP)). In view of

the results of the preceding sections, u 1is unique. It is given by u(x) = 7 : 3 |x|.
Now, for 6 = 1, if there exists a viscosity solution u of (1), then using the relations
between linear equations in viscosity form and integral equalities proved in M. G. Crandall
and P. L. Lions (4], we deduce that for all x ¢ R, t > 0

(34) u(x) = utetxle™ + tix| .

Thus, if u were a uniformly continuous viscosity solution of (SP) for 6 = 1 (34) will
yield for all t > 0

tlxl ¢« ~l '+ ¢+ {cletx| + cle"t < c|x| + ¢,

which is impossible. Therefore for 9 = 1 there does not exist a solution of (SP) in

uc(RY).

Example IV.2: Take H(x,p) = =x /|p| for x,p ¢ R« Then u = 0 is a solution of (SP)
~ x

but u(x) = T is also a Lipschitz continuous viscosity solution of (SP). Observe

that H satisfies (32). Observe also that H satisfies (33) for all 06 ¢ (0,1) with

3 Voo (g
u({r) = Car. Thus we do not have uniqueness in BUC(R’) or even in W (R").

Proof of Theorem 1V. 1: Step 1: We treat the case when (32) holds. Let

M = sup |H(x,0)| . Truncating H by M, we may assume without loss of generality
N

R
that H 1is bounded by M provided we prove the existence of a viscosity solution in
BUC(RN) bounded by M. Then, let g ¢ D(IN) satisfy 9p 2 ! on Bp, 0 gg < 1, and
|bpgl € 1/R. We consider Hp(x,p) = gpi{x)H(x,p). Clearly, Hp ¢ suc(® x Bg), |Hg| < M and
(35) Hply,Mx = y)) = Hp(x,A(x = y)) < m(A}lx = yl2 + |x = y]) + (WR)x - y|.
Hence, by the results of (8], there exists a unique viscosity solution wup of
(36) Hp(x,Dug) + ug = 0 in R
anad luRI <M in RN. Next, we go through the proof of M. G. Crandall and P. L. Lions {8]

to estimate the modulus of continuity of up and we observe that since

fugix) = up(y)! ¢« 24 for |x = y| = 1 and (35) holds, we obtain a uniform modulus of

-17=
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continuity on ug. Therefore, up (or a subsequence) converges uniformly on bounded sets
to a u ¢ BUC(RY) which is a viscosity solution of (SP) and which satisfies [u] < M.
Step 2: We treat the case when (33) holds. We introduce for R ¢ =
Hp(x,p) = ogp(x)Max(Min(H(x,p),R),~R] ,

where ®R is defined as in Step 1. Then we have
(37) HR(y,X(x = y)) = Hp(x,A(x = y)) < Gllx - y|2 + u(lx - y|) + |x - y|.
Hence, there exists a viscosity solution ug € BUC(BN) of (36).

Next we go through the estimates on the modulus of continuity of u in {B] and we

observe (using (37) and the subadditivity of y) that we have

X = X
HR(x.C T;‘:‘%T) - HR(Y'PI;_:—§|) te+cCix -yl
> <c8|x -y| +e +clx -y| - u(lx - y|)
e+ C(1=-8)x-y| -utlx=-y}) >0

on B x &N if ¢ is large enough. Hence, for all ¢ > 0, there exists a Ce > 0 such that
lug(x) = ugpiy)| € € + cclx = y|,  ¥(x,y) ¢ &

and thus ugp has a modulus of continuity uniform in R.

Next, we consider a maximum point X of ug(x) = % |x12- We have, using the uniform
modulus, |x]2 < ug(X) = ug(0) ¢ c(1+ |x|), for some C independent of R and thus

|;} € C (where C will denote various constants). Since up is a viscosity solution of
(36)
Ho(X/oX) + u (x) < 0
and we deduce finally
UR(0) < up(x) +C € =H (x,X) +C<C

Similarly one proves that wugp(0) is bounded from below independently of R.

- 18-
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Therefore, up f(or a subsequence) converges uniformly on compact sets to some

- u € UC(!N) which is a viscosity solution of (SP) by the standard stability properties of

viscosity solutions.

I Remark: In fact, the proof in Step 2 still works if we replace (33) by (U) provided that
(38) Tim mixir” ' < 1.
r+0+

v
] v

- 19~
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V. EXISTENCE OF MINIMAL SOLUTIONS OF THE STATIONARY PROBLEM

In this section we consider Hamiltonians H(x,p) € C(IN x B') which satisfy
(39) H(x,p) - H(x,0) + +» as !pl » » uniformly for x bounded.
Theorem V. 1: We assume (39) and that there exists a viscosity subsolution u ¢ C(IN) of
(SP)y. Then there exists a viscosity solution u ¢ C(lp) of (SP), satisfying u > u which
is minimal in the sense that if v is another viscosity soltion of (SP); satisfying v > u,

then v » u.

Remarks: i)} In view of (39), any subsolution of (SP); is locally Lipschitz on . i.
ii) (SP)y may not have a viscosity subsolution as is shown by the following

example: let H(x,p) (1/2)|p|2 + ]x|2 and assume that v is a viscosity subsolution, that
is
1 2
v+ glov]? < -]
2
in the viscosity sense. Since we clearly must have v < -|x|2 it follows that for large n

we may choose points X, of least modulus so that v(xn) = -n2 and these points satisfy

]xn| < n. It follows that v varies by at least =(n + 1)2 + n2 = «2n - 1 on the part of the R
ray through the origin and x,, ¢ which joins x,,4 and the sphere |x| = n. Moreover, since h
Ixnl < n, for any § > 0 we have |xn+1| - lxnl ¢ 1+ § infinitely often and we assume that :
this is satisfied for the n's we deal with below. It follows that the least Lipschitz c_

constant for u on any part of the annulus A = {x:|xn| < |x! < |xn+1[} containing the ray
mentioned above is at least (2n + 1)/(1 + §). Therefore the superdifferential D*u of u has
values of at least this modulus on this annulus (because a bound on values of D' is a
Lipschitz constant {4]). Let y ¢ A and p € D+u(Y) satisfy
lpl » (2n + 1/(1 + &),
Since u 1s a subsolution we conclude that
~tn+ D24 20+ N/ + % cuy) + |pl2 < -lylZc o

which is impossible if § < 1 (and 4 is at our disposal) and n is large.

NI ST Ty

Using more refined arguments, we can give a sharper nonexistence analysis for a class -

of examples of this sort. Consider the problem

=20~
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where f(x) e C(Ip), m > 1 and

% ¥ % _»
O M
1)
‘.'l
« S

lim sup f(x)|x|'m. ¢ =(m')~{1m")
x| e

where m' = m/(m=1). We claim there exists no viscosity (sub) solution u of this problem.

Indeed, subtracting if necessary some large constant from u we may assume that
£(x) € -A|x|®™" on B with A > (m)~(Tm")

Then if there were to exist u viscosity subsolution of (SP)O, the equation would yield:

I u€f on R'. Thus if f" ¢ BuC(®RY), f" <0, f"=f on En' £n X f on R and if

uP® is the viscosity solution (in BUC(RY)) of
;’lounl'“+u"=f“ in ®

then we know (cf. P. L. Lions [18]) that uP 4is given by
* n 1 m', =t
a"(x) = inf {g (£ (X)) + — |Xt| le at/x, e clro,=(, R, Xg = x} .

t/m* if t <t =m'logn, X = xt for t > t, we find

Choosing x| = 1, ¥ = xe n

tn
L] -
1 )1*m et}e t

ul(x) < g {-Aet + (=, 1+m'}

- at = -t _[x - (;:7)

and thus u" + == for |x| = 1. On the other hand since u" ¢ BUC, u < f and thus

! uy + =™ as |x| + =, we have u < w"  for |x| large and by the standard comparison
results u ¢ u" on R'. The contradiction shows that there is no subsolution.
Proof of Theo-em V.1: We first consider the problem

§ (40) H({x,Du) + 4w =0 in Bp, u = u on 3By

for R < =, Clearly, u is a viscosity subsolution of (40) and since H satisfies (39),

we may apply the existence result of P. L. Lions {19] (see also G. Barles [2]) to deduce

-2 1=
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the existence of a viscosity solution up of (40): in addition ug is Lipschitz
continuous, ug > u on ER' and thus ug(x) increases with R. Then, for any fixed
Ry and R > Ry, we deduce from (39) and (40)

ug ¢ -inf{H(x,p):{x| < Ry, p € ) on B, -
0

Therefore up is uniformly bounded in R on bounded sets of " Using once more (39),
(40) we deduce that up is bounded in w"”(BRO) for any fixed Ry < =. Therefore ug
converges to a limit u uniformly on bounded sets and u 1is a viscosity solution of
(SP). Finally, if v 1is any viscosity supersolution of (SP); above u, it is in
particular a viscosity supersolution of (40) and v > u on 23Bp. Therefore, Vv » ug on
ER and letting R qo to +wo, we deduce v » u in FN; that is, u is the minimal

solution above u.

-22-
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VI. THE CAUCHY PROBLEM WITHOUT CONDITIONS AT INFINITY.

We now consider the Cauchy problem (CP). Our main result is the
Theorem VI.1: Let H satisfy (5).
Uniqueness: Let H satisfy (LU) and let u,v ¢ C(lN x {0,T}) Le, respectively, a viscosity
subsolution of
(4n u, + HOx,t,Du) = 0 in RN x (0,T)
and a viscosity supersolution of
(an: ve + Hix,t,Dv) + f£(x,t) = 0 in B x (0,T].

Then we have for all t ¢ [0,T)

(42) sup (ul+,t) = v(+,t)) * < sup (ul+,0) = v(+,0n" + ]t sup £(+,s) ds .

R R o @
Exigstence: Let H satisfy (LU). If ¢ € C(l”), then there exists a unique viscosity
solution u € C(R x [0,T]) of (CP).
Remark: We could replace 1+ |x| in (5) by ®(|x|) where ¢ is continuous, positive,
increasing and fm 3%37 = o,
Sketch of Proof: Since most of the proof of Theorem VI.1 is a straightforward adaptation
of proofs presented in the first three sections, we will only prove the uniqueness part for
f = 0. The main point is the following lemma:
Lemma VI.1: With the notations and the assumptions of part 1) of Theorem V1.1 and if
£z 0, we have for all x ¢ R', t ¢ [0,T] and € > O
(43) (u - vitix,t) < sup{lu - v)*(y,0):fy| < (1 + le)ecet - 1} + 2t

where C. is a constant large enough such that y(r) < e + Cer:

Proof: To prove lLemma VI. 1, we fix xq € Rpf tp € (0,T) and we are going to prove (43)
with x = Xgre t = ty. To this end, we set R = Log(1 + ‘xol) + Csto and we consider

welxet) = exp{% (Log(1 + |x|) + c.t = R]}

=23~
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where 5§ > 0. One checks easily that Vs is a viscosity solution of

3w6
iR Ix|)|owg] = 0 in R x J0,0f
and w, > 0. Furthermore, if 8y = {(x,t) e B x (0,T), 1+ |x| < exp(R +h - C.t)} for RN

h > 0, we observe that wg * +* on aAh N (RN x [0,T)) as § + 0+. Next, using (5}, we

deduce from the usual comparison argument that for any fixed h and for all § small

B T

enough
(u =~ v){x,t) = 2et = wa(x,t) < sup{(u - V)+(Yr0)rIYI < e - gy
for all (x,t) € A . Then, remarking that w,(x,t) + 0 as 6 + 0+ if (xt) € A . we ‘_. i;
deduce
(u - v){x,t) € 2et + sup{({u - v)+(y,0)/fy{ <ef - 1, ¥ (x,t) € Ko . iP,:_‘

- c t NN
we conclude by observing that (xg,tg) € 8, and that eRut=(1+ ‘x0|)e €70 _ 4, 3

)
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VII. REMARKS ON THE CAUCHY PROBLEM.

We wish to present in this section the analogues of the results given in Sections 1II,

IV. We begin with the results corresponding to Section IV.

Theorem VII.1: Let H satisfy (U) and ¢ ¢ uc(®¥). Then there exists a viscosity solution

u of (CP) whic” is uniformly continuous on R, uniformly for t e [0,T]. .-:';i

Remarks: 1) If H{x,t,0) is bounded on R x [0,T), then we may choose u so that it is

f also bounded.

k ii) If (U) is strengthened to

t 2 a
H(y,t,M(x = y)) = H{x,t,A(x = y)) € CA|x = y|* + C|x = y|

for some C > 0, a ¢ (0,1], then we may choose the solution u so that it is HSlder
continuous in x of exponent a, uniformly in t € [0,T].

Proof: We follow the approximation procedure introduced in the proof of Theorem IV.? in ’

Section IV and it will suffice to explain how to obtain enough a priori estimates which
depend only on m in (U). First of all, we claim that one may obtain an estimate on the
modulus of continuity of u(e,t) wuniform in ¢t, which depends only on m. Indeed,
following the proof in [8], we just have to exhibit convenient supersolutions of
we + H(x,t,Dw) = H(y,t,-Dyw) =0 on R x 0,T[ .
Given € > 0 choose § > 0, C. > 1 and Cg such that m(§) < €,
fe(x) = o(y)| <« € +c.lx = yl,
and m(r) € Cyr for r > §. Put X = max(206p1) and
wix,y) = €(1 + ¢t) + Celx - ylext.
One easily justifies the following computation in the viscosity sense:

w, + H(x,t,Dw) - H(y,t,-Dyw) > e + Kcelx - y|eKt - m((1 + Ceext)|x - Yl)'

t
and the right-hand side is nonegative if |x = y|(1 + CEeKt) < § gince ¢ » m(§) and it is
nonnegative if Ix - y|(1 + CceKt) > § since in this case

m((1 + Ccext)|x - y|) € Cg(1 + ceext)lx - yl < 2C5Ceexc|x - yl < chextlx - y].

We conclude that the (approximations of) u satisfy

[u(xet) = uly,t)]| € e(1 + T) + ceeXt|x = y|
25«
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where K and C_. depend only on € and m as in (U). This yields the modulus of continuity
with respect to x uniform in t as claimed.
To obtain a modulus of continuity in t for x bounded, we may argue as follows:

Fix x € Bp and € > 0 and set

1 2
me(t) = max (uly.t) -5 |y = x| .
N
YER
Since u is uniformly continuous in the space variables, m_ is well defined and continuous

€
on [0,T]. We next claim that there is a C {depending on R and ¢€) such that

(44) mé < Con (0,T)

in the viscosity (and, by linearity, distribution - see [4]) sense. Thus

(45) me(t +8) <me(t) +Cs for 0 ¢t <t +38<T.

Indeed, if ¢ ¢ C'((O,T)) and m. = % has a maximum at € ¢ (0,T), we choose X which maximizes
ul.,t) - (1/2e)}. - x|? and then we have

(46) v (E) + H(X,E, E’(x - X)) < 0.

However, the uniform continuity in x already proved provides an estimate

-2;—1,; - xl2 < u(x,t) - ulx,t) € C(1 + |x = x|}

so !; - x] < C€1/2 with (another) constant C independent of t, x, R, €. Since H is bounded
on bounded sets, (45) implies (44). 1In particular, choosing € = 1 we deduce that
u(x,t) € Cg + mq(0) < Cg + p({x)

for t ¢ (0,T] and x ¢ Bp, where Cg denotes various constants depending on on R. A lower
bound is obtained in the same way.

Next, we see that for x ¢ Bp and 0 ¢ t < t + s < T and x a modulus in x uniform in t
(47) u(x,t + s) € Co pgs + me(t) € Ce,p8 * u(x,t) + igg(x(x) - XZ/ZE)
where Cc,R denotes various constants depending on £ and R. Choosing € and then s small

shows that (u(x,t + s) - u(x,t))+ is small for s » 0 small. A lower bound is obtainable in

a similar way, establishing the continuity in t.
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Our next and final result concerns the analogue of the results of Section III. We

-'-.l‘

will assume that for some m > 1 H satisfies

Yt
[P

<"

(48) |H(x,t,p) = Hix,t,@)| € o1 + 1p|® 1 + |q|™N|p - 4l

L% 4
14
-

¥

for all x,p,q € lp, t e [0,T].

- "’

We will also consider viscosity sub and supersolutions u,v ¢ c(® x [0,T)) of the

equation -
u, + Hix,t,Du) = 0
which are locally lLipschtiz continuous on B x (0,T] and satisfy ‘5 .
(49) |bu| < ce1+ |[x™' %™, |ov| < o1+ xR, 2
for some 0 <y <m' - 1. ~V'f€
Theorem V1I.2: Llet H satisfy (LU) and (48). Llet u,v satisfy the preceding conditions. ;.;%:
Then we have: sup (u -~ v)# = gup (u(e,0) = v(-,O))+ . iﬁfﬁ?
R'x{0,T) R L

Remark: If H(x,t,p) == |p|® and if o € C(R') satisfies
Remark = Ip

(50) lim e(x)|x|™ = o, ﬁ
[x] voe 2

Then, using the Lax=Oleinik formula (see P. L. Lions [18]), we see that

ulx,t) = inf {oty) + D x - y]m't1'm'}

yer "

defines a viscosity solution of (CP) in C(lp x (0,T]) for all T < . Furthermore u is

locally Lipschitz in R x (0,#) and
Ibu(x,t)} € Cp(1 + |[x™"%"VR, ¥ T <= ae. in R x (0,T) .
for all T < ». Similar existence results for more general Hamiltonians may be obtained

using the regularizing effects proved in P. L. Lions {21].

Sketch of Proof: Since we have already sketched many similar proofs, we just outline the ;; .
arguments. We first observe that combining (48) and (49) we get :?.$

IH(x,t,Du) = H(x,t,Dv)| < C(1 + |x|)t=-8|D(u = v)]

-27=




4 where 0 < 8 < 1. Next, we consider for § > 0, R >0
_ 1 C 1-6
. wglxet) = exp{-s- (Log(1 + [x]|) + =5t - R)}
- and we check that v is a viscosity solution of
3\46 -8
— ec(1+ |x|1t " |ow,| =0 in B x (0,m) .
it §
This yields easily that (u = vt < Wei by appropriate choices of R, we conclude upon
letting § go to 0.
Im; -
»




e RSN i s A= AP i A . et M Sast Jha S T A 4 A A A BN

REFERENCES
1) Barles, G., Existence results for first-order Hamilton=Jaccbi
equations, Annales IHP, Analyse non linéaire 1 (1984), 325 - 340.

(2] Barles, G., Remarques sur des résultats d'existence pour les €quations de Hamilton-

Jacobi du premier ordre, Annales IHP, Analyse non linéaire 2 (1985), 21 ~ 33.
(3} Brezis, H., Semilinear equations in ® without condition at infinity, Appl. Math.

Opt. 12 (1984), 27t - 282.

AN
-

(4] Crandall, M. G., L. C. Evans and P. L. lLions, Some properties of viscosity
solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc.,
282 (1984), 487 - 502. _—
{5} Crandall, M. G., and P. L. Lions, Condition d'unicité pour les solutions J;.*;
généralisées des équations de Hamilton=Jacobi du premier ordre, . S
C. R. Acad. Sci. Paris 292 (1981), 183 - 186. o

[e] Crandall, M. G. and P. L. Lions, Viscosity solutions of Hamilton=-Jacobi

equations, Trans. Amer. Math. Soc. 277 (1983), 1 - 42.
[7) Crandall, M. G. and P. L. Lions, Solutions de viscosité non bornées des
équations de Hamilton-Jacobi du premier ordre, C. R. Acad. Sci.

Paris 298 (1984), 217 = 220.

(8] Crandall, M. G., and P. L. Lions, On existence and uniqueness of solutions .£h~_‘
of Hamilton-=Jacobi equations, to appear in Non. Anal. Theor. Meth. Appl.
[9] Crandall, M. G., and P. L. Lions, Solutions de viscosité pour les
équations de Hamilton-Jacobi dans des espaces de Banach, C. R. Acad. Sc.
Paris 300 (1985), 67 ~ 70. E
{10] Crandall, M. G. and P. L. Lions, Hamilton=Jacobi equations in infinite
dimensions, Part I: Uniqueness of viscosity solutions, J. Func. Anal.

62 (1985), 379 - 396.

v

=20




[12)

[13]

{14}

[15)

(16}

(17}

(18]

[19]

(20}

[21]

{22]

.4

LN
..-v I“

BN

Crandall, M. G., and P. L. Lions, Hamilton-Jacobi equations in
infinite dimensions, Part Il: Existence of viscosity solutions,

to appear in J. Func. Anal.

PA
L.,:-

Evans, L. C. and P. E. Souganidis, Differential games and representation

o

formulas for solutions of Hamilton-Jacobi-Isaacs equations,

Indiana J. Math. 33 (1984), 773 - 797.

Ishii, H., Uniqueness of unbounded solutions of Hamilton-Jacobi equations,

Indiana Univ. Math. J. 33 (1984), 721 - 748.

Ishii, H., Remarks on the Existence of Viscosity Solutions of Hamilton-

Jacobi Equations, Bull. Facul. Sci. Eng., Chuo University, 26 (1983), 5-24.

Ishii, H., Existence and uniqueness of solutions of Hamilton-Jacobi

equations, preprint.

lasry, J. M. and P. L. Lions, Equations elliptiques nonlinéaires avec conditions aux
limites infinies et contr8le stochastique avec contraintes 4'@tat, C. R. Acad. Sci.
Paris, (1985)

lasry, J. M. and P. L. Lions, in preparation

Lions, P. L., Generalized Solutions of Hamilton-Jacobi Equations,

Pitman, london, 1982.

Lions, P. L., Existence results for first-order Hamilton-Jacobi equations,

Richerche Mat. Napoli, 32 (1983), 1 - 23,

Lions, Optimal control of diffusion processes and Hamilton-Jacobi-Bellman

equations, Part 2, Comm. on PDE 8, (1983), 1229 - 1276.

Lions, P. L., Regularizing effects for Hamilton-Jacobi equations, Applicable Anal.

( 1985) 'f o
Souganidis, P. E., Existence of viscosity solutions of Hamilton-=Jacobi

equations, J. Diff. Eq. 56 (1985), 345 - 390.




r..-“;— S T TR T — LS AP & S SR DA YA ARAGC A AE A A s At Ao A A Tul ae e A bl et o aie - S SAn R TA ahe e dos D d
V-

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
T. REPORT NUMBER 2. GQVT, CESSION NO.| 3. RECIPIENT'S CATALOG NUMBER
An- BB
4. TITLE (and Subtitle) S. ‘TYPE OF REPORT & PERIOD COVERED
REMARKS ON THE EXISTENCE AND UNIQUENESS OF Summary Report ‘1“3 spectfic
UNBOUNDED VISCOSITY SOLUTIONS OF HAMILTON= — R‘f”“:“gcpfgfn N
JACOBI EQUATIONS - PERFORMING ORG. REPORT NuMs
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Michael G. Crandall and Pierre-Louis Lions DAAG29-80-C-0041
9. PERFORMING ORGANIZATION NAME AND ADORESS 10. ::giR.AI'GOERLKESS‘NTT.NPURMOBJEESST. TASK
Mathematics Research Center, University of .
610 Walnut Street Wisconsin Work Unit Number 1 -
Applied Analysis
Madison, Wisconsin 53705
11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
U. S. Army Research Office October 1985
: P.O. Box 12211 3. NUMBER OF PAGES
’_ Research Triangle Park, North Carolina 27709 30
. 14, MONITORING AGENCY NAME & ADDRESS(if different from Controlling Oftice) 15. SECURITY CL ASS. (of this report)
h UNCLASSIFIED

18a. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, i different from Report)

t18. SUPPLEMENTARY NOTES

19. KEY WORDS (&onflmn on reverse eide il necessary and identify by block number)

Hamilton-Jacobi equations, existence and uniqueness of solutions,

structure properties of Hamiltonian, existence of minimal solutions,

viscosity solutions, critical theory, differential games. ]
{
1

20. ABSTRACT (Continue on reverse side it necesaary and identify by block number) _T -
This paper is concerned with various questions about the existence and
uniqueness of solutions of Hamilton=-Jacobi equations in RV, The issues treasq. .
have to do with the interaction between structure properties of the Hamiltonian ]
(in particular, continuity and growth properties), properties of the solutions b
and the existence and uniqueness, Uniqueness is exhibited in appropriate growth
classes depending on the Hamiltonian and existence is exhibited in these classes
when the assumptions are slightly strengthened. Existence results are also

given under assumptions for which uniqueness fails, existence of minimal

DD , 35", 1473  eoimion oF 1 nov 68 is oesoLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) [’ ;

.."\ AR ER I R R LT A e e e T e e T D A IR SR .
S N L S L N PP S PRSP PO A PRI BC T PP S e




20. ABSTRACT - cont'd.

solutions is shown given the existence of a subsolution, and examples are given
to indicate the sharpness of some of the results.

BARINE T SR

N

v o o.m
'4'.'1"‘
‘a

-

¢

"_5 o
".'.l.

(

T

'

UGS
.

"

SRS IR SEPC I SPRe




* A

A AP . ¢+ -+ [P o R 8 =3 NG " R
TS, 2 M s BTG B T X S
[ . M t .t . B -

Ce T et et
[C. EPIPUL S PN N ay




